RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. THIRD SEMESTER EXAMINATION, DECEMBER 2018

SECOND YEAR [BATCH 2017-20] CHEMISTRY [Honours]

Time: 11 am – 1 pm Paper: III [Gr–B] Full Marks: 35

[Use one Answer Book for Unit I and another Answer Book for Unit II, III & IV]

(Attempt one question from each Unit)

Unit I

[10 marks]

1. a) Carry out the following conversions:

: 17/12/2018

Date

 1.5×2

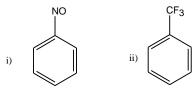
b) Identify [A] [B] and [C] in the following reaction sequence.

2

$$\begin{array}{c|c}
 & & \\
 & & \\
\hline
 & & \\
 & & \\
\hline
 & & \\$$

c) Both Phenol and Salicylic acid give identical product upon bromination-explain.

_


d) Carry out the following transformations.(Mechanism is not necessary).

 1.5×2

2. a) Account for the following observations:

- i) Nitrobenzene is used as solvent in friedel-Crafts reaction.
- ii)2,6-dimethyl acetophenone undergoes decarbonylation when treated with concentrated H_2SO_4
- b) Predict the favoured portion of electrophilic substitution of the following compound and justify your answer in each case.

2

Predict the product (s) of the following reactions. Give mechanism.

 1.5×2

i)

EtOH

Convert: Phenol→Paracetamol

2

<u>Unit II</u>

[8 marks]

A pink solid has the empirical formula CoCl₃•5NH₃•H₂O• An aqueous solution of this salt is also 3. pink and rapidly gives 3 mol AgCl per mol salt when treated with excess AgNO₃ solution. When this pink solid is heated, it loses one mole, water per mole salt to give a purple solid with the same ratio of NH₃:Cl:Co. Deduce the structure of two complexes.

2

2

b) Find out the pH of 10^{-8} M HCl solution.

4.

a)

2

Me₃P can act as a stronger base than Me₃N towards B₂H₆Explain.

Give one example of chelating ligand(with structure) applied in each of the qualitative and quantitative inorganic analysis.

1

1

Write the IUPAC name of the complex: $[Cr(NCS)_4(NH_3)_2]$

1

Write the name of the complex according to IUPAC rules: $Fe(C_5H_5)_2$ State the essential characteristics of a ligand to form an inner metallic complex of first order with example. Describe an use of such complexes from analytical view point.

1+2

- State and explain the effect on acidity in the following cases?
 - i) Addition of BiN to liquid NH₃ ii) Addition of CuSO₄ to aqueous (NH₄)₂SO₄

2

d) AgClO₄ is significantly more soluble in benzene than in n-hexane. Explain.

2

2

Unit III

[8 marks]

- What will be the effect on the potential of Fe^{3+}/Fe^{2+} system on adding (i)NH₄HF₂ ii) 1,10-5. a) 1.5+1.5phenonthrolien.
 - Why Cu(II) readily liberates iodine from iodide but in presence of ethylenediamine it does not? [Given $E^0_{cu(II)/Cu(I)} = +0.15V$; $E_{\frac{1}{2}I_2/I^-} = +0.54 \text{ V,} E^0_{cu(II)/cul} = 0.87 \text{ V}$]

c) Predict thermodynamic redox stability of H₂O₂ with the help of free energy calculation and also construct the Frost diagram from the following data:

$$O_2^{+0.7V}$$
 $H_2O_2^{+1.76V}$ H_2O

- 6. a) Give the name and structure of a redox indicator. Show its mode of action with equation.
 - b) prove that disproportionation reaction in aqueous solution is thermodynamically favourable for the system given below:

$$2Cu^{+}_{(aq)} \rightleftharpoons Cu^{0} + Cu^{2+}_{(aq)}$$

Given:
$$E^0 Cu^{2+}_{(aq)}/Cu^{+}_{(aq)} = +0.153V$$
, $E^0_{Cu}^{2+}_{(aq)}/Cu^0 = +0.337 V$

3

2

2

3

1

2

2

2

2

2

3

- Calculate the pK for the reaction $HFe(CN)_6^{3-} = H^+ + Fe(CN)_6^{4-}$. [Given $E_{Fe(CN)_6}^{0}^{3-} / Fe(CN)_6^{4-} = +0.365V$; $E_{Fe(CN)6}^{0}$ /_{HFe(CN)6} = +0.619V].
- Establish the Nernst equation for the following redox couple: BrO 3/Br in alkaline medium.

[9 marks] **Unit IV**

- Assuming X-axis as sigma bonding axis, predict how many π -m.os would be formed by d-7. orbitals of combining atoms. Give the orbital overlap diagram in each case.
 - Stating reason, indicate the expected changes in bond order and bond distances in the following ionization process:

i)
$$O_2 \rightarrow O_2^+ + e$$
 ii) $NO + e \rightarrow N\bar{O}$

- 2 2
- c) Account for the photoconductivity of selenium.
- 1 d) Although HF is a monprotic acid still it forms bi-salts..... Explain.
- e) Explain why O₃ molecules has a dipole moment.
- CO and N₂ molecules are isoelectronic but differ greatly in their donor properly. Explain. 8. a)
 - Bonding molecular orbitals are stabilised while antibonding molecular orbitals ae distabilised than b) the uncombined atomic orbitals. Justify the statement.
 - Between H₂SO₄ and H₃PO₄, which one is more viscous and why? c)
 - What arre intrinsic and extrinsic semiconductors? Indicate the type of semiconductor (n or p) expected in the following: (i) As doped Ge ii) B doped Si